Respiratory uncoupling lowers blood pressure through a leptin-dependent mechanism in genetically obese mice.

نویسندگان

  • Carlos Bernal-Mizrachi
  • Sherry Weng
  • Bing Li
  • Lorraine A Nolte
  • Chu Feng
  • Trey Coleman
  • John O Holloszy
  • Clay F Semenkovich
چکیده

Insulin resistance is commonly associated with hypertension, a condition that causes vascular disease in people with obesity and type 2 diabetes. The mechanisms linking hypertension and insulin resistance are poorly understood. To determine whether respiratory uncoupling can prevent insulin resistance-related hypertension, we crossed transgenic mice expressing uncoupling protein 1 (UCP1) in skeletal muscle with lethal yellow (A(y)/a) mice, genetically obese animals known to have elevated blood pressure. Despite increased food intake, UCP-A(y)/a mice weighed less than their A(y)/a littermates. The metabolic rate was higher in UCP-A(y)/a mice than in A(y)/a mice and did not impair their ability to alter oxygen consumption in response to temperature changes, an adaptation involving sympathetic nervous system activity. Compared with their nontransgenic littermates, UCP-A(y)/a mice had lower fasting insulin, glucose, triglyceride, and cholesterol levels and were more insulin sensitive. Blood pressure, serum leptin, and urinary catecholamine levels were also lower in uncoupled mice. Independent of sympathetic nervous system activity, low-dose peripheral leptin infusion increased blood pressure in UCP-A(y)/a mice but not in their A(y)/a littermates. These data indicate that skeletal muscle respiratory uncoupling reverses insulin resistance and lowers blood pressure in genetic obesity without affecting thermoregulation. The data also suggest that uncoupling could decrease the risk of atherosclerosis in type 2 diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Respiratory Uncoupling Lowers Blood Pressure Through a Leptin-Dependent Mechanism

Insulin resistance is commonly associated with hypertension, a condition that causes vascular disease in people with obesity and type 2 diabetes. The mechanisms linking hypertension and insulin resistance are poorly understood. To determine whether respiratory uncoupling can prevent insulin resistance–related hypertension, we crossed transgenic mice expressing uncoupling protein 1 (UCP1) in ske...

متن کامل

The role of autonomic efferents and uncoupling protein 1 in the glucose-lowering effect of leptin therapy

OBJECTIVE Leptin reverses hyperglycemia in rodent models of type 1 diabetes (T1D). Direct application of leptin to the brain can lower blood glucose in diabetic rodents, and can activate autonomic efferents and non-shivering thermogenesis in brown adipose tissue (BAT). We investigated whether leptin reverses hyperglycemia through a mechanism that requires autonomic innervation, or uncoupling pr...

متن کامل

Riboflavin Lowers Blood Pressure: A Review of a Novel Gene-nutrient Interaction

Hypertension, defined as a systolic/diastolic blood pressure of 140/90 mmHg or greater, is estimated to carry a three-fold increased risk of developing cardiovascular diseases (CVDs). Evidence from genome-wide association studies has identified an association between blood pressure and the gene encoding the folate-metabolising enzyme, methylenetetrahydrofolate reductase (MTHFR). Recent meta-ana...

متن کامل

The relationship between circulating levels of IL-18 and leptin, HsCRP, blood pressure and cardiorespiratory function in obese and lean men

ABSTRACT Introduction: Interleukin-18 (IL-18) is a proinflammatory cytokine that is produced in adipose tissue and skeletal muscle. The circulating levels of IL-18 increases in obesity and some metabolic and cardiorespiratory diseases. The aim of the present study is to investigate the relationship between circulating levels of IL-18 and leptin, high-sensitivity C-reactive protei...

متن کامل

Role of selective leptin resistance in diet-induced obesity hypertension.

Leptin is an adipocyte-derived hormone that plays a key role in the regulation of body weight through its actions on appetite and metabolism. Leptin also increases sympathetic nerve activity (SNA) and blood pressure. We tested the hypothesis that diet-induced obesity is associated with resistance to the metabolic actions of leptin but preservation of its renal SNA and arterial pressure effects,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 2002